AGNES -
Lehre und Prüfung online
Studierende in Vorlesung
Anmelden

Business Analytics and Data Science - Detailseite

  • Funktionen:
Grunddaten
Veranstaltungsart Vorlesung Veranstaltungsnummer 707922
Semester WiSe 2024/25 SWS 2
Rhythmus jedes 2. Semester Moodle-Link  
Veranstaltungsstatus Freigegeben für Vorlesungsverzeichnis  Freigegeben  Sprache englisch
Belegungsfrist Es findet keine Online-Belegung über AGNES statt!
Veranstaltungsformat Präsenz

Termine

Gruppe 1
Tag Zeit Rhythmus Dauer Raum Gebäude Raum-
plan
Lehrperson Status Bemerkung fällt aus am Max. Teilnehmer/-innen
Do. 10:00 bis 12:00 wöch 202 (Hörsaal)
Stockwerk: 2. OG


Spand1 Institutsgebäude - Spandauer Straße 1 (SPA 1)

  findet statt    
Gruppe 1:
 


Zugeordnete Person
Zugeordnete Person Zuständigkeit
Lessmann, Stefan, Professor, Dr. verantwortlich
Studiengänge
Abschluss Studiengang LP Semester
Master of Education (BS)  Wirtschaftspädagogik (WV) 1. Fach ( Vertiefung: mit LA-Option; POVersion: 2015 )     -  
Master of Science  Betriebswirtschaftslehre Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Economics/ Management Sc. Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Statistik Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Volkswirtschaftslehre Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Master of Science  Wirtschaftsinformatik Hauptfach ( Vertiefung: kein LA; POVersion: 2016 )     -  
Programmstud.-o.Abschl.MA  Betriebswirtschaftslehre Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Statistik Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Volkswirtschaftslehre Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Wirtschaftsinformatik Programm ( POVersion: 1999 )     -  
Programmstud.-o.Abschl.MA  Wirtschaftspädagogik (WV) Programm ( POVersion: 1999 )     -  
Zuordnung zu Einrichtungen
Einrichtung
Wirtschaftswissenschaftliche Fakultät, Wirtschaftsinformatik
Inhalt
Kommentar

The module Business Analytics and Data Science (BADS) is concerned with theories, concepts, and practices to inform and support managerial decision making by means of formal, data oriented methods. Students have the opportunity to develop a variety of skills, including:

  • Students are familiar with the three branches of descriptive, predictive and prescriptive analytics and appreciate the relationships between these streams.
  • Given some data, students are able to select appropriate techniques to summarize and visualize the data so as to maximize managerial insight.
  • Students understand the potential and also the limitations of predictive analytics to aid decision making. They comprehend when and how business applications can benefit from predictive analytics. Given some decision task, they are able to recommend suitable prediction methods.
  • Students are familiar with statistical programming languages. Using standard tools, they can develop basic and advanced prediction models and assess their accuracy in a statistically sound manner.

The lecture is accompanied by a tutorial session, in which lecture topics are further elaborated. The aim of the tutorial is to develop and assess empirical models using contemporary data science software. More specifically, the Python programming language is used in tutorial session. Students who are not familiar with Python are given an opportunity to learn Python/programming fundamentals in the first weeks of the tutorial sessions. In order to acquire the skills needed for the course in such short time frame, students must be prepared to invest ample time into self-study exercises.

Bemerkung

StO/PO MA 2016: 6 LP, Modul: "Business Analytics and Data Science"

Prüfung

Written exam (90 min)

Zielgruppe

MA-WI Pflicht

Andere Master Wahlpflicht

Strukturbaum

Die Veranstaltung wurde 8 mal im Vorlesungsverzeichnis WiSe 2024/25 gefunden:

Humboldt-Universität zu Berlin | Unter den Linden 6 | D-10099 Berlin